

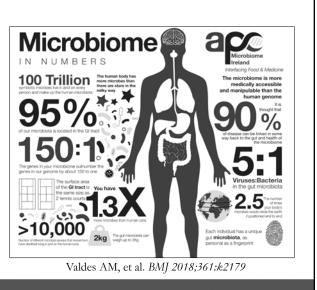
1. Identify examples of how diet, lifestyle, and the environment influence the human microbiome.

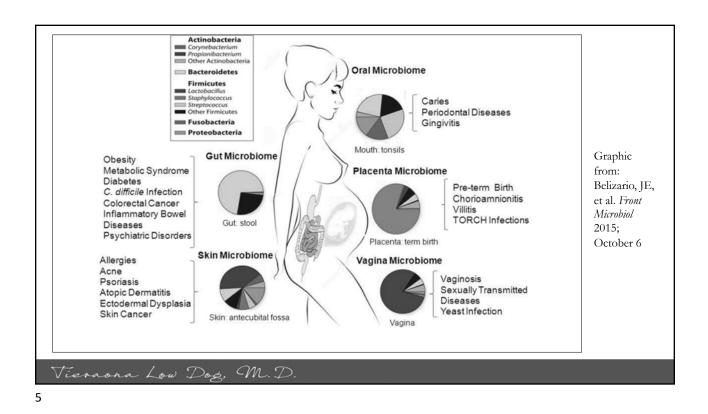
2. Discuss the relationship between the microbiota and disease.

3. Identify how certain medications, such as proton pump inhibitors and antibiotics, impact oral and gut microbiota.

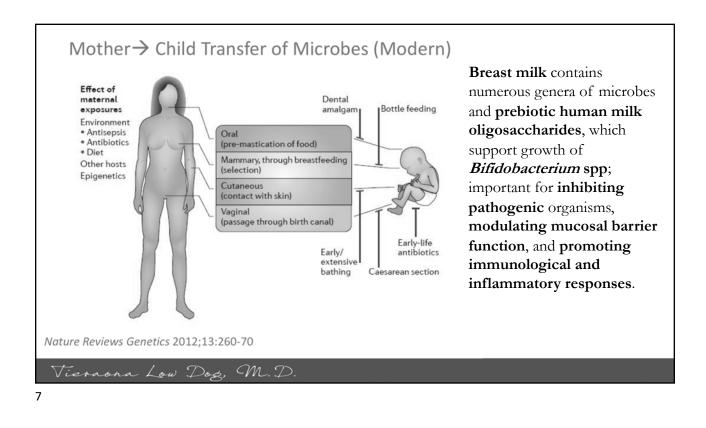
4. Describe the role of diet, dietary fiber, prebiotics and probiotics in optimizing the microbiota.

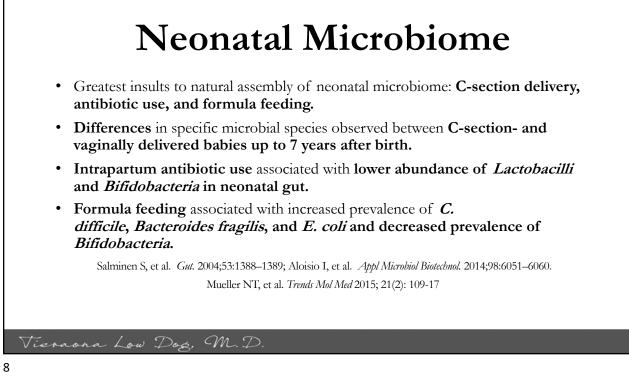
Vieraona Low Dog, M.D.




Definitions

- *Microbiome*—collective genomes of microbes in particular environment
- *Microbiota*—community of microorganisms themselves.


Vieraona Low Dog, M.D.


- **Core microbiome** similar for all individuals **Variable microbiome** different between individuals.
- Lower diversity marker of *dysbiosis*: associated with autoimmune disease, obesity, and metabolic conditions.

Probiotics and Birth Mode

- Mothers given probiotic (Bifidobacterium breve, Propionibacterium freundenreichii subsp. shermanii JS, Lactobacillus rhamnosus Lc705, and L. rhamnosus GG.
- **Probiotic group** (N = 168 breastfed and 31 formula-fed), or **placebo supplement** (N = 201 breastfed and 22 formula-fed)given during **pregnancy, infants received same**.
- Placebo group: both birth mode and antibiotic use, significantly associated with altered microbiota composition/function, particularly reduced *Bifidobacterium*.
- Probiotic group: effects of antibiotics/birth mode either completely eliminated or reduced.

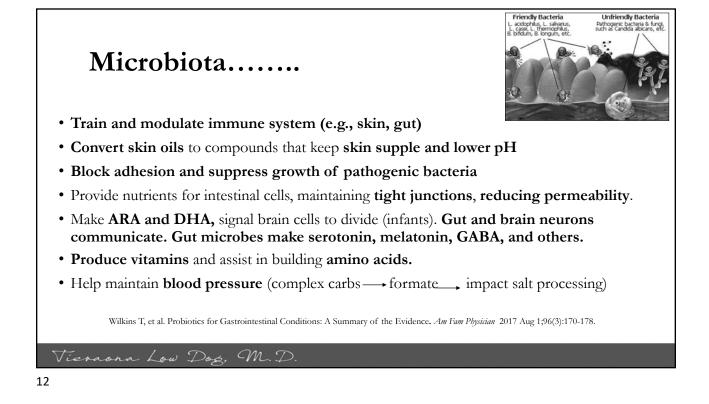
Korpela K, et al. Probiotic Supplementation Restores Normal Microbiota Composition and Function in Antibiotic-Treated and in Caesarean-Born Infants. *Microbiome* 2018; 6(1): 182

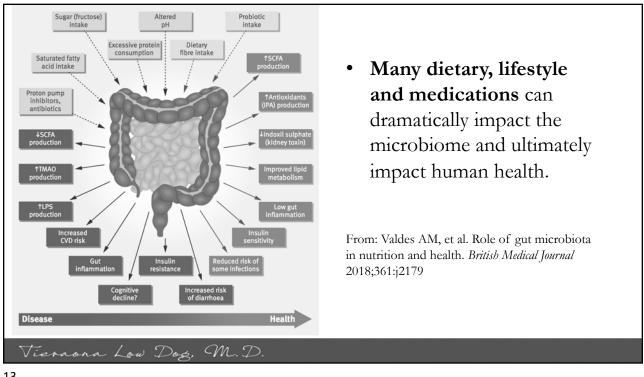
Vieraona Low Dog, M.D.

- Within weeks, **microbial specialization** occurs. Different populations in mouth, gut, skin, etc.
- Microbial populations in infant similar to people they live with. Microbiota dramatically altered by new foods, antibiotics, protonpump inhibitor use, etc. These shifts can last many, many years.
- Number and types of species increase and change with age. Example: babies have more folate *producing* microbes adults have more folate *harvesting* microbes.

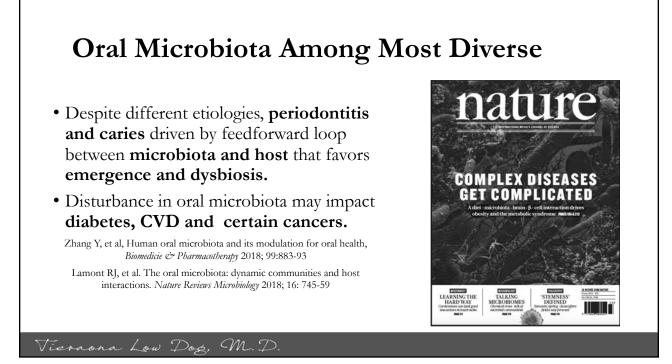
Azad MB, et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. *Can Medical Association Journal*, 2013; 185(5), 385-394.

Vieraona Low Dog, M.D.


Age 3 to Old Age


- Microbiome becomes stable. Even with disruptions (medications, disease, dietary changes) – usually returns to baseline.
- Large shifts occur with onset of puberty (skin changes), pregnancy (vaginal microbiome), menopause, etc.
- After age 65, *microbe populations and diversity decrease.*
- Climate, geography, diet, hygiene, medication use, etc. all impact microbiome.




Yatsunenko T, et al. Human gut microbiome viewed across age and geography. *Nature* 2012; 486:222-228. The Human Microbiome Project Consortium (2012). Structure, function and diversity of the healthy human microbiome. *Nature* 2012; 86, 207-214.

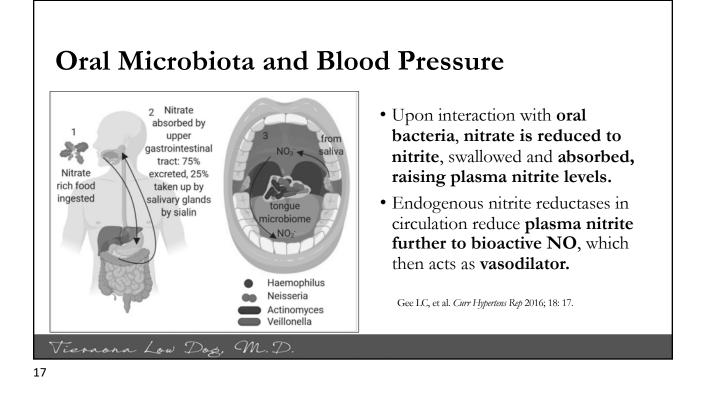
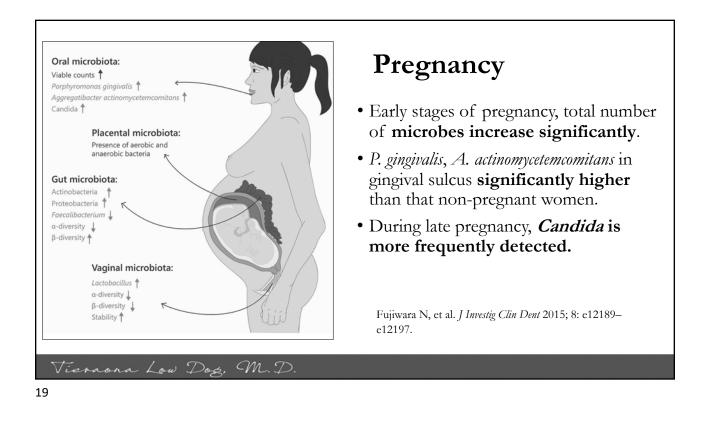
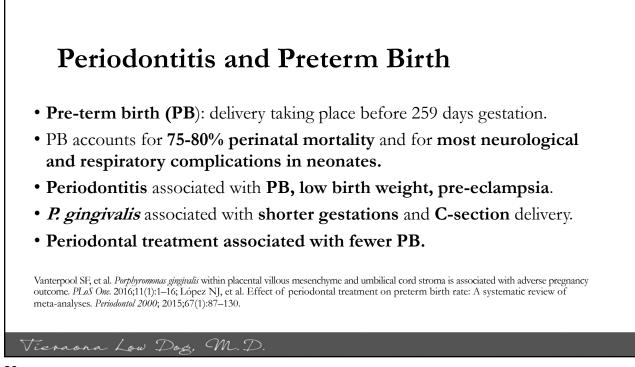


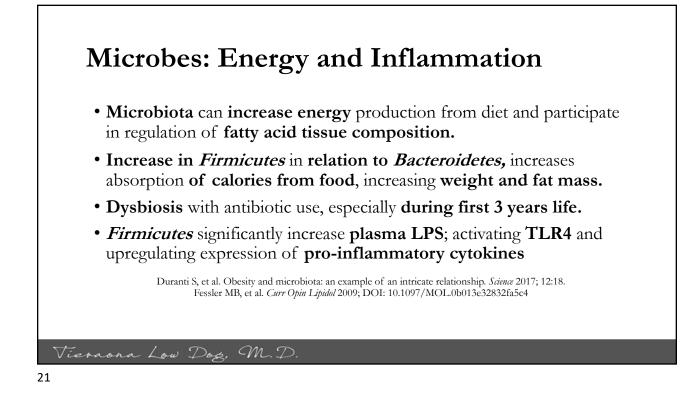
Table 1 Distribution of dominant microorganisms in oral cavity

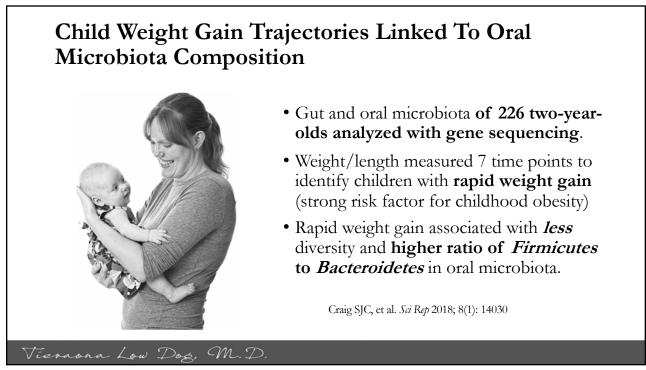
From: The oral microbiota – a mechanistic role for systemic diseases

Section	Dominant microorganism
Hard palate	Streptococcus, Uncl.Pasteurellaceae, Veillonella, Prevotella, Uncl.Lactobacillales
Tongue dorsum	Streptococcus, Veillonella, Prevotella, Uncl. Pasteurellaceae, Actinomyces
Saliva	Prevotella, Streptococcus, Veillonella, Uncl. Pasteurellaceae
Palatine tonsils	Streptococcus, Veillonella, Prevotella, Uncl. Pasteurellaceae, Fusobacterium
Throat	Streptococcus, Veillonella, Prevotella, Uncl. Pasteurellaceae, Actinomyces, Fusobacterium, Uncl. Lactobacillales
Buccal mucosa	Streptococcus, Uncl. Pasteurellaceae, Gemella
Keratinised ginguva	Streptococcus, Uncl. Pasteurellaceae
Supragingvial plaque	Streptococcus, Capnocytophaga, Corynebacterium, Uncl. Pasteurellaceae, Uncl. Neisseriaceae
Subgingival plaque	Streptococcus, Fusobacterium, Capnocytophaga, Prevotella, Corynebacterium
Dentures	Staphylococcus epidermidis, Streptococcus
Lips	Streptococcus, Candida albicans

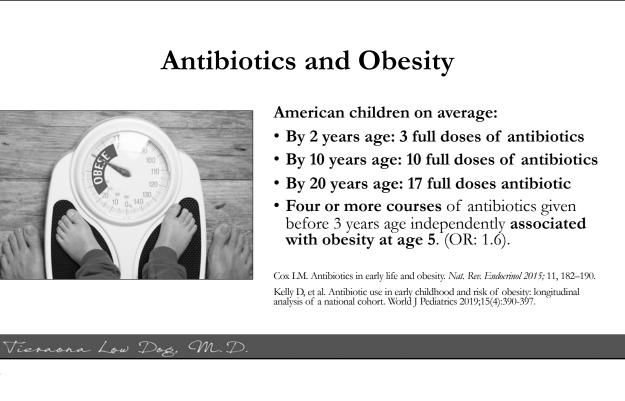


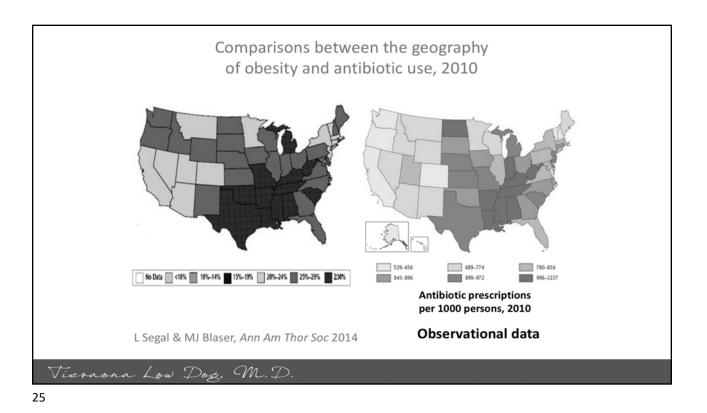


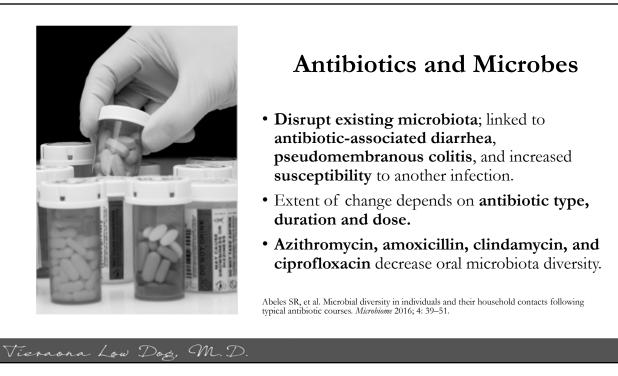

- In healthy volunteers, chlorhexidine increased systolic BP ~ 5 mm/Hg, equivalent to manipulation of dietary salt intake
- Those who cleaned tongue twice daily, had greatest increase in systolic BP after using chlorhexidine.


Grant MM, et al. J Clin Med 2019; 8(8): 1110

Vieraona Low Dog, M.D.

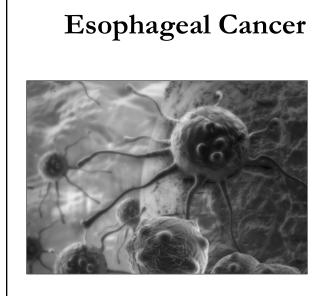






Title of the study	Year	Subjects of the study	Final result(s) gathered	Reference	
Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics.	2011	28354 mother-child	Antibiotics in infancy influences the risk of overweight in later childhood	Ajslev et al., 2011	
Infant antibiotic exposures and early-life body mass.	2013	11532 children	Exposure to antibiotics during the first 6 months of life was associated with increases in body mass.	Trasande et al., 2013	
Antibiotic treatment during infancy and increased body mass index in boys: an international cross-sectional study.	2014	74946 children	Exposure to antibiotics during the first 12 months of life is associated with a small increase in BMI in boys aged 5–8 years	Murphy et al., 2014	Del Fiol FS, et al. Obesity: A new adverse
Infant antibiotic exposure and the development of childhood overweight and central adiposity	2014	1047 children	Antibiotic use in the first year of life was associated with overweight	Azad et al., 2014	effect of antibiotics?
Association of antibiotics in infancy with early childhood obesity.	2014	64580 children	Repeated exposure to broad-spectrum antibiotics was associated with early childhood obesity	Bailey et al., 2014	Front Pharmacol 2018; https://doi.org/10.3389
Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity.	2015	436 mother-child dyads	Exposure to antibiotics in the second or third trimester of pregnancy were associated with higher risk of childhood obesity.	Mueller et al., 2015	/fphar.2018.01408
Prenatal exposure to systemic antibacterials and overweight and obesity in Danish schoolchildren: a prevalence study.	2015	9886 children	Prenatal exposure to systemic antibacterials was associated with an increased risk of overweight and obesity at school age	Mor et al., 2015	
Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life.	2015	6114 boys and 5948 girls	Antibiotic exposure before 6 months was associated with increased body mass	Saari et al., 2015	
Early Life Antibiotic Exposure and Weight Development in Children.	2016	979 children	Repeated exposure to antibiotics early in life, especially β-lactam agents, is associated with increased weight and height.	Mbakwa et al., 2016	
Antibiotic Use and Childhood Body Mass Index Trajectory.	2016	142824 children	Body Mass Index increase	Schwartz et al., 2016	
Administration of Antibiotics to Children Before Age 2 Years Increases Risk for Childhood Obesity.	2016	21714 children	Administration of 3 or more courses of antibiotics before age of 2 years was associated with an increased risk of early childhood obesity	Scott et al., 2016	

Antibiotic Prophylaxis

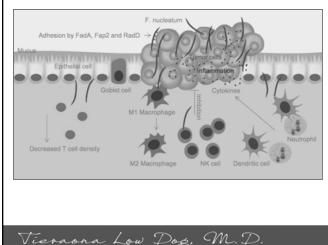


• UIC study: **80% of antibiotics** prescribed by **dentists for prophylaxis unnecessary.**

- Amoxicillin 69% of scripts
- Clindamycin next most prescribed (dentists are highest frequency prescribers) – strongly associated with *C. difficile*.

Suda KJ, et al. JAMA Network Open 2019;2(5):e193909.

Vieraona Low Dog, M.D.



Gao, S, et al. Infect Agent Cancer 2016; 11: 3–12.

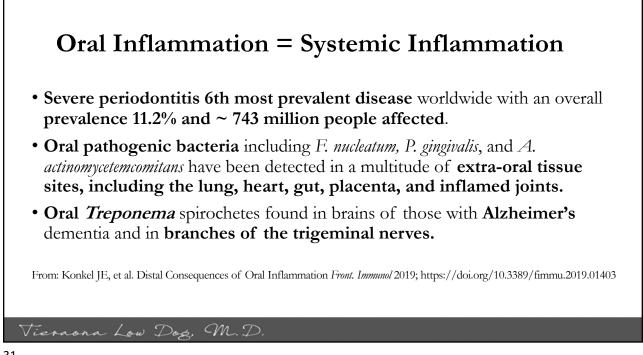
Vieraona Low Dog, M.D.

- Sixth leading cause cancer death
- *P. gingivalis* detected in 61% of cancerous tissues, 12% adjacent tissues, and 0% of normal esophageal mucosa.
- Eradication of common oral pathogen *might* help reduce the burden of esophageal cancer

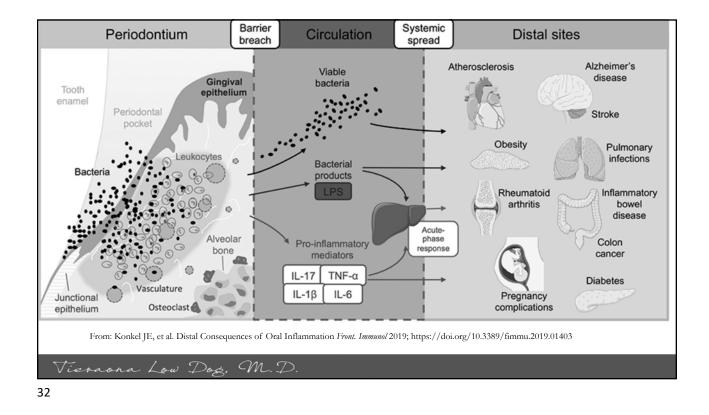
Colorectal Cancer

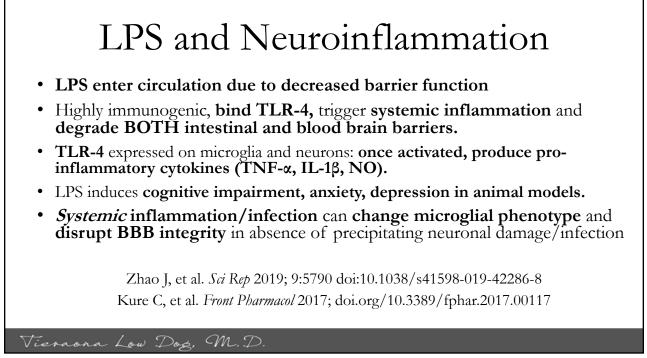
- *Fusobacteria* cause excessive immune responses/turn on cancer growth genes. Linked with colorectal cancer.
- Have specific surface molecules that allow them to invade cells.
- *F. nucleatum* associated with **periodontitis,** abundant in oral cavity, thought to **originate there**.

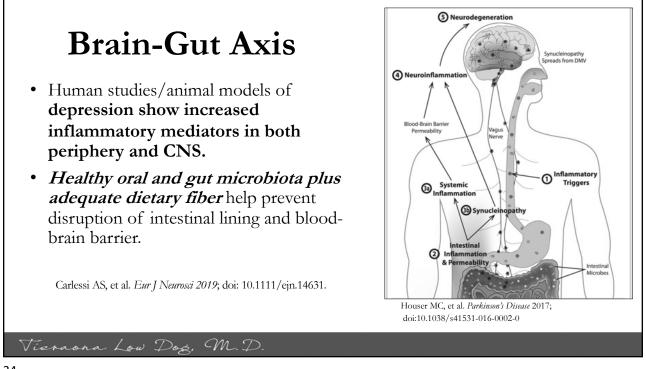
Nosho K, et al. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. World J Gastroenterol 2016; 22: 557–566

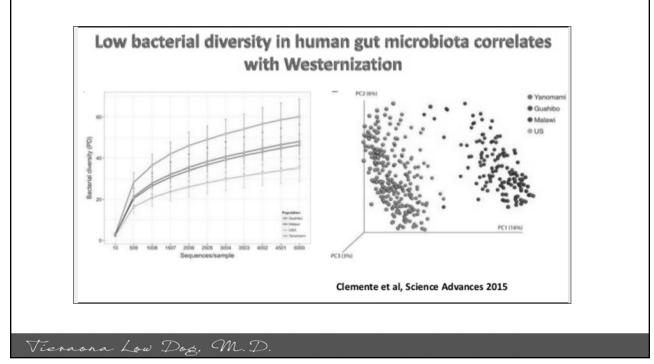

29

Pancreatic Cancer and Gum Disease

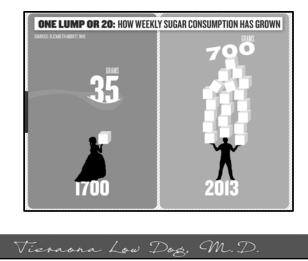



- 10-year study: bacterial contents in mouthwash samples from 361 Americans who later developed pancreatic CA + 371 matched controls were analyzed.
- P. gingivalis and Aggregatibacter actinomycetemcomitans associated with
 > 50% increased risk of pancreatic cancer.
- Screening tool? Prevention?


Fan X, et al. *Gut* 2018; 67(1): 120-7 Graphic from Getty Images



It's the Fiber Folks!



Vieraona Low Dog, M.D.

- Diets high in fiber, low in sugar increase *Bifidobacteria*, decreasing intestinal permeability.
- Prebiotics: **un-digestible plant fiber** acts as food for microbiota.
- Bananas, onions, garlic, leeks, Jerusalem artichoke, apple skin, chicory root, dandelion greens, beans, wheat flour all prebiotics.

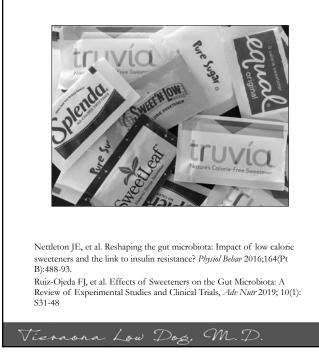
37

Too Little Fiber, Too Much Sugar

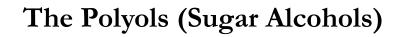
Canadians average daily sugar intake:

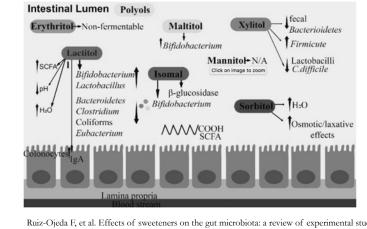
- 101 grams (24 tsp) children 1-8 years
- 115 grams (27 tsp) children 9-18 years
- 85 grams (20 tsp) for adults lower due to increase intake "diet" sodas.

Langlois K, et al. Change in total sugars consumption among Canadian children and adults. *Health Rep* 2019 Jan 16;30(1):10-19.


Obesity and Microbiota?

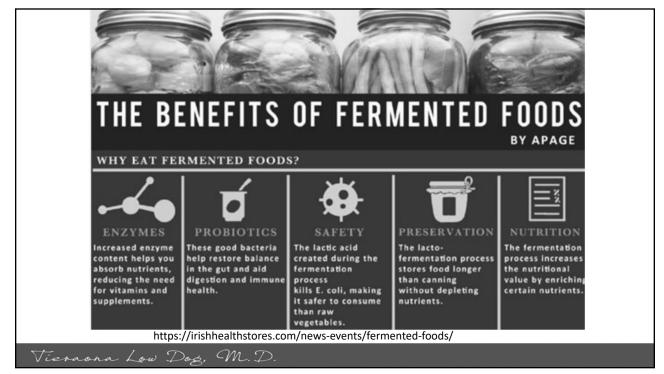
- Early disruption of gut microbiota = too few *Bifidobacteria*, can lead to obesity.
- Diet high in sugar, simple carbs, and saturated fat encourages microbes better at *extracting* energy from food, signaling body to store energy as fat.
- Bacteria transplanted from overweight mice to thin mice make the thin mice gain weight.

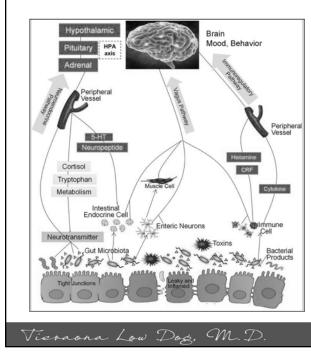



Federico A, et al. Gut microbiota, obesity and metabolic disorders. *Minerva Gastroenterol Dietol* 2017;63(4):337-344.

Sugar Substitutes

- Sugar substitutes frequently *1000 times sweeter* than sucrose.
- Despite GRAS status by regulatory agencies, sugar substitutes **can have negative effects** on gut microbiota.
- Sucralose, saccharin and stevia all shown to disrupt balance and diversity of gut microbiota.




Vieraona Low Dog, M.D

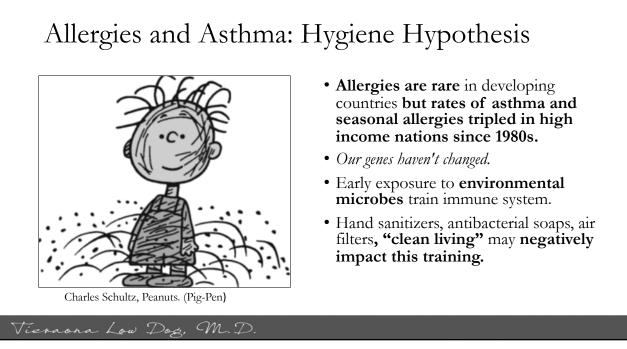
- Erythritol, mannitol and sorbitol have no effect on gut microbiota.
- Isomaltose and maltitol, increase *bifidobacteria* and may have prebiotic actions.

Ruiz-Ojeda F, et al. Effects of sweeteners on the gut microbiota: a review of experimental studies and clinical trials. Adv Nutr 2019; 10(S1): PMC6363527

Dietary element	Effect on gut microbiome	Effect on health outcomes mediated by gut microbiome		
Low FODMAP diet	Low FODMAP diet increased Actinobacteria; high FODMAP diet decreased abundance of bacteria involved in gas consumption ⁵⁸	Reduced symptoms of irritable bowel syndrome ⁵⁶		
Cheese Increased <i>Bifidobacteria</i> , ⁹⁷⁹⁸ which are known for their positiv health benefits to their host through their metabolic activities Decrease in <i>Bacteroides</i> and <i>Clostridia</i> , some strains of which associated with intestinal infections ⁹⁸		Potential protection against pathogens. ¹⁰⁰ Increased production of SCFA and reduced production of TMAO ⁹⁹		
Fibre and prebiotics	Increased microbiota diversity and SCFA production ^{22 101 102}	Reduced type 2 diabetes ²² and cardiovascular disease ¹⁰³		
Artificial sweeteners	Overgrowth of Proteobacteria and Escherichia coli. ¹⁰⁴ Bacteroides, Clostridia, and total aerobic bacteria were significantly lower, and faecal pH was significantly higher ⁴⁷	Induced glucose intolerance ¹⁰⁵		
Polyphenols (eg, from tea, coffee, berries, and vegetables such as artichokes, olives, and asparagus)	Increased intestinal barrier protectors (<i>Bifidobacteria</i> and Lactobacillus), butyrate producing bacteria (<i>Faecalibacterium</i> <i>prausnitzii</i> and <i>Roseburia</i>) and <i>Bacteroides vulgatus</i> and Akkermansia muciniphila. ¹⁰⁷ Decreased lipopolysaccharide producers (<i>E coli</i> and <i>Enterobacter cloacae</i>) ¹⁰⁶	Gut micro-organisms alter polyphenol bioavailability resulting in reduction of metabolic syndrome markers and cardiovascular risk markers ¹⁰⁸		
Vegan	Very modest differences in composition and diversity in humans and strong differences in metabolomic profile compared with omnivore diet in humans ⁵⁰	Some studies show benefit of vegetarian over omnivore diet, ¹⁰⁹ others fail to find a difference ¹¹⁰		

04

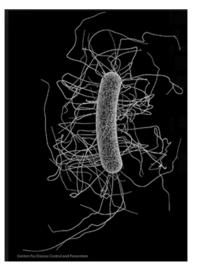
110


Sleep and Stress

- Disruption of **circadian rhythm** alters gut microbiome equilibrium. *Microbes and humans share circadian clock.*
- Emotional and physiological stress affect gut microorganisms; impacting immune and nervous systems.
- *Lactobacillus, Bifidobacterium*, and *Enterococcus* supplementation *may* improve stress response.

Farre N, et al. Sleep and circadian alterations and the gut microbiome: associations or causality. *Current Sleep Med Reports* 2018; 4(1):50-57

Li, Y, et al. The role of microbiome in insomnia, circadian disturbance and depression. *Front Psychiatr* 2018; doi: 10.3389/fpsyt.2018.00669



Randomized placebo-controlled trial of *L*, *thamnosus* HN001 given from 35 weeks gestation to 6 months postpartum to women who were breastfeeding and 2 years for all infants.
At 2 years and 11 years: 54% reduction in eczema, 27% reduction hay fever, and 29% reduction in atopic sensitization to food and aeroallergens.
Wickens K, et al. Pediatr Allergy Immunol 2018; 29(8): 808-14

Medications: Proton Pump Inhibitors

- Millions take PPIs for heartburn when not indicated or for too long. *PPIs dramatically disrupt gut microbiota.*
- Meta-analysis 23 studies (n=300,000): 65% increase risk C. difficile associated diarrhea amongst those taking PPI.
- PPI users have *5 times the risk* of developing GI infections compared to non-users.

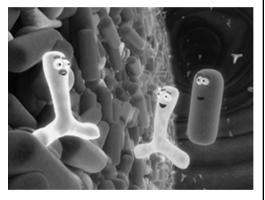
Janarthanan S, et al. *Am J Gastroenterol* 2012;107:1001–10 Hafiz RA, et al. *Ann Pharmacother*. 2018 Jul;52(7):613-622. https://choosingwiselycanada.org/heartburn-gerd-ppi/

Role for Probiotics

- 2017 Cochrane systematic review/meta-analysis
 31 RCTs: moderate certainty evidence that probiotics are effective for preventing *C. difficile* associated diarrhea in both adults and children.
- Why are they not recommended?

Vieraona Low Dog, M.D.

Goldenberg JZ, et al. Cochrane Database Syst Rev. 2017 Dec 19;12:CD006095.

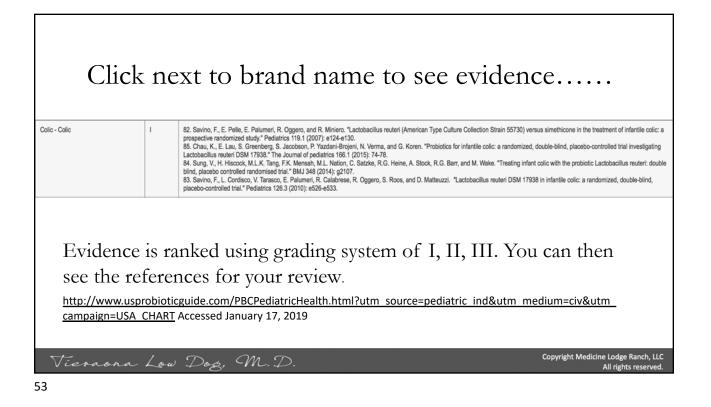


L. Casei image: Power and Syred/Science Photo Library

49

Acute Infectious Diarrhea

- Strong evidence for probiotics in acute infectious diarrhea, which is common for those traveling, kids going to daycare, etc.
- Meta-analysis **17 RCTs** (2,102 children): significant **reduction in duration** of diarrhea with probiotic use (20 fewer hours).
- Meta-analysis **8 RCTs** (1,229 children): *L. reuteri* reduced duration of diarrhea (25 fewer hours), increased cure rate days 1 and 2.



Urbańska M, et al. Systematic review with metaanalysis: *Lactobacillus reuteri* DSM 17938 for diarrhoeal diseases in children. *Aliment Pharmacol Ther.* 2016;43(10):1025–1034. Feizizadeh S, et al. Efficacy and safety of *Saccharomyces boulardii* for acute diarrhea. *Pediatrics.* 2014;134(1):e176–e191.

Vieraona Low Dog, M.D.

Outcome	Reference	No of studies/ participants	Evidence of benefit?	Prevention and treatment of	Saez Lara et al (2015) ¹²²	14/821 ulcerative colitis	Yes		
Clostridium difficile associated	Goldenberg et al (2017) ¹¹¹	39/9955	Yes	Crohn's disease and ulcerative colitis		8/374 Crohn's disease			
diarrhoea in adults and children				Pulmonary exacerbations in	Ananathan et al (2016) ¹²³	9/275	Yes		
Necrotising enterocolitis	Al Faleh et al (2014) ¹¹² Rees et al (2017) ¹¹³	17/5338	Yes	children with cystic fibrosis	111 J J 1 (0 0 4 4) 134				
Antibiotic associated diarrhoea in children	Goldenberg et al (2015) ¹¹⁴	26/3898	Yes	Type 2 diabetes (fasting glucose, glycated haemoglobin test)	Akbari et al (2016) ¹²⁴	13/805	Yes		
Probiotics for preventing acute upper respiratory	Hao et al (2015) ¹¹⁵	12/3720	Yes	Type 2 diabetes (insulin resistance, insulin levels)	Zhang et al (2016) ¹²⁵	7/425	Yes		
tract infections Urinary tract infections	Schwenger et al (2015) ¹¹⁶	9/735	No	Necrotising enterocolitis in pre-term neonates with focus on	Athalye-Jape et al (2016) ¹²⁶	6/1778	Yes	From: Valdes AM, et al. Role	
Prevention of asthma and wheeze	Azad et al (2013) ¹¹⁷	6/1364	No	Lactobacillus reuteri Reduction of serum	Mazidi et al (2017) ¹²⁷	19/935	Yes	of gut	
in infants Prevention of	Mansfield et al (2014)	16/2797	Yes	concentration of C reactive protein				nutrition and health. BMJ 2018;361:j2179	
eczema in infants and children		10/1///		Cardiovascular risk factors in patients	Hendijani et al (2017) ¹²⁸	11/641	Yes		
Prevention of invasive fungal infections in preterm	Agrawal et al (2015) ¹¹⁹	19/4912	Unclear	with type 2 diabetes				2018;501:j21	
neonates				Reduction of total cholesterol and low	Wu et al (2017) ¹²⁹	15/976	Yes		
Prevention of nosocomial infections	Manzanares et al (2015) ¹²⁰	30/2972	Yes	density lipoprotein cholesterol	density lipoprotein cholesterol				
Treatment of	Ahmadi et al (2015) ¹²¹	14/1149	Yes	Depressive symptoms	Wallace and Milev (2017) ^{79,130}	6/1080	Yes		
rotavirus diarrhoea in infants and children				Vulvovaginal candidiasis in non- pregnant women	Xie et al (2018) ¹³¹	10/1656	Yes		

	AEProbio Clinical Guide to Probiotic Products Available in USA Indications, Desage Forms and Clinical Evidence to Date - 2019 Edition							
			INDICATION	IS FOR PED	IATRIC HEALTH			
how	10 entries							
0	Brand Name A	Probiotic Strain	Dosage Form	CFU/Dose	No of Doses/Day	Indications (Level of Evidence)		
0	Bio-Kult9 Infantis _i h	L. casel PXNB 37 [™] L. rhamnosus PXNB 54 [™] Streptococcus thermophilas PXNB 66 [™] L. acidophilus PXNB 35 [™] B. rever PXNB 25 [™] L. detbruekt sap. bulgaricus PXNB 39 [™] B. infantis PXNB 27 [™]	Sachet	1B/sachet	1⁄5 -1 sachet	CEIAD - Childhood eczemal Atopic dematilis (II) Cotie - Cotie (II) HP - Helicobader pylori - Adjunct to standard eradication therapy (II)		
٥	BioGaia® ProTectis® Baby Drops with Vitamin $D_{\tilde{l}_{1}}^{\rm op}$	L. reuteri DSM 17938	Drops	100M/5drops	5 drops	ABJ - Arkbickic associated dianhea - Prevention (I) C - Constitution (I) C EXA) - Diabhood eccema Akopic dematilis (I) CD - Common Indicational disease - community acquired (I) Colic - Colic (I) IIS/IAP - Intralie boxel syndromeR functional abdominal pain (I) ID - Infectious dianhea (I) Regurg CI MAC - Reactoss regurgatation Improves guatorintestinal mobility (I)		
0	BioGala® ProTectis®	L. reuteri DSM 17938	Chew. tabs Drops	100M/tab 100M/tdrops	1 tab 5 drops	ABD. Archibidic associated diarrhea - Prevention (i) C. C. Con-Schern (i) C. EXAD - Schern (i) C. EXAD - Schern (i) C. Comor - Indeticuous disease - community acquired (i) Colic - Colic (i) ESSTAP - Initiale boxel syndrometric/urclani abdominia pain (i) ID - Indecisoa diarrhea (i) Regurg GI MAC - Realcose regurgitation Improves guatorintestinal motility (i)		
۲	Gerber® Good Start® Soothe Powder Infant Formula @p	L. reuteri DSM 17938	Powder	1M/gram	Routine feeding if alternative to breast milk is required	AAD - Antibiotic associated diarrhea - Prevention (I) Colic - Colic (I) ID - Infectious diarrhea (I) Regurgi (GI Mot - Reduces regurgitation/ Improves gastrointestinal motility (I)		
٥	Gerber® Soothe Problotic Colic Drops $\widehat{\mu_{p}}$	L. reuteri DSM 17938	Drops	100M/5 drops	5 drops	AAD - Antibiotic associated diamtea - Prevention (I) C - Constipation (I) CDD - Common Inflotous diagramma (II) CDD - Common Inflotous diagramma (II) CDD - Common Inflotous diagramma (II) CDD - Common Inflotous diagramma (II) ID - Inflotous diamtea (II) CDD - Realows mountation (III) conves quastroinestinal molitiv (II)		

- IT IS ALL CONNECTED....
- Eat a diet rich in whole plant foods, prebiotics, and fiber.
- Limit sugar intake and use of sugar substitutes.
- Include fermented foods/drinks.
- Consider probiotics be **species and strain specific.**
- Find healthy ways to manage your stress and get adequate sleep.
- Good dental hygiene and regular dental visits.

"When we try to pick out anything by itself, we find it hitched to everything else in the universe." John Muir

Vieraona Low Dog, M.D.